Solvent-free production of singlet oxygen at the gas-solid interface : visible light activated organic-inorganic hybrid microreactors including new cyanoaromatic photosensitizers

We synthesized new cyanoaromatics, benzo[b]triphenylene-9,14-dicarbonitrile (DBTP) 1a and a graftable derivative, 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid (DBTP-COOH) 1b, easily prepared from commercial reagents. Their photosensitizing properties were investigated. Hybrid porous silica mon...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 18 vom: 15. Sept., Seite 11168-79
1. Verfasser: Lacombe, Sylvie (VerfasserIn)
Weitere Verfasser: Soumillion, Jean-Philippe, El Kadib, Abdelkrim, Pigot, Thierry, Blanc, Sylvie, Brown, Ross, Oliveros, Esther, Cantau, Christophe, Saint-Cricq, Philippe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We synthesized new cyanoaromatics, benzo[b]triphenylene-9,14-dicarbonitrile (DBTP) 1a and a graftable derivative, 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid (DBTP-COOH) 1b, easily prepared from commercial reagents. Their photosensitizing properties were investigated. Hybrid porous silica monoliths loaded with encapsulated 1a or grafted 1b were prepared, and their adsorption, spectroscopic and photosensitizing properties, as well as stability, were compared. Solvent-free, efficient oxidation of dimethylsulfide (DMS) was observed at the gas-solid interface under visible light irradiation. Quantum yields of formation of 1O2 inside the porous monoliths are comparable to those of phenalenone. Singlet oxygen lifetimes (approximately 25 micros) were found to be longer in silica monoliths than in usual polar solvents such as methanol or ethanol. This new class of hybrid materials work as porous, transparent, and highly efficient microreactors for oxidation reactions under visible light
Beschreibung:Date Completed 04.12.2009
Date Revised 08.09.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la901504q