Emulsions stabilized by carbon nanotube-silica nanohybrids

Emulsions have been stabilized by carbon nanotube-silica nanohybrids. The as-prepared nanotube-silica particles generate water-in-oil (w/o) emulsions, regardless of the water/oil volume ratio used. The emulsion volume fraction was much higher than that obtained with nanotubes only, and it was found...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 18 vom: 15. Sept., Seite 10843-51
1. Verfasser: Shen, Min (VerfasserIn)
Weitere Verfasser: Resasco, Daniel E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Emulsions have been stabilized by carbon nanotube-silica nanohybrids. The as-prepared nanotube-silica particles generate water-in-oil (w/o) emulsions, regardless of the water/oil volume ratio used. The emulsion volume fraction was much higher than that obtained with nanotubes only, and it was found to increase with water/oil ratio due to an increasing amount of water retained in the emulsion droplets. However, beyond a certain water/oil ratio, the emulsion fraction rapidly decreased. This point of collapse is a strong function of the amount of carbon nanotube-silica particles in the system. Oxidation of the nanohybrids by nitric acid can effectively modify the particle surfaces and change the resulting emulsion properties. The treatment in nitric acid increases the density of functional groups on the carbon nanotubes. Depending on the extent of functionalization, the effect of oxidation can vary from increasing the volume of emulsion stabilized to reversing the type of emulsion to oil-in-water (o/w). The emulsions are remarkably stable against coalescence and sedimentation and can be easily separated by filtration or centrifugation, which make them suitable for applications in interfacial catalytic processes in which the catalyst can be easily recovered after reaction
Beschreibung:Date Completed 04.12.2009
Date Revised 08.09.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la901380b