|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM19102211X |
003 |
DE-627 |
005 |
20231223190429.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2009.560
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0637.xml
|
035 |
|
|
|a (DE-627)NLM19102211X
|
035 |
|
|
|a (NLM)19717906
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Guglielmi, G
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Membrane bioreactors for winery wastewater treatment
|b case-studies at full scale
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.10.2009
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The membrane bioreactor technology (MBR) is nowadays a suitable alternative for winery wastewater treatment, thanks to low footprint, complete suspended solids removal, high efficiency in COD abatement and quick start-up. In this paper, data from two full-scale MBRs equipped with flat-sheet membranes (plant A and plant B) are presented and discussed. COD characterisation by respirometry pointed out the high biodegradability degree of both wastewater, with a strong prevalence of the readily biodegradable fraction. An extended version of Activated Sludge Model No. 3 was used to fit the experimental OUR profiles and to assess the maximum growth rate of heterotrophic biomass on sludge samples collected at both sites; the stoichiometric yield coefficients were also calculated. Sludge filterability and dewaterability were investigated with batch tests; laboratory results confirmed the field observations. Finally, some considerations are listed, aimed at defining possible key-issues for optimal process design and operation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Andreottola, G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Foladori, P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ziglio, G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 60(2009), 5 vom: 21., Seite 1201-7
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:60
|g year:2009
|g number:5
|g day:21
|g pages:1201-7
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2009.560
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 60
|j 2009
|e 5
|b 21
|h 1201-7
|