Blind and semi-blind deblurring of natural images

A method for blind image deblurring is presented. The method only makes weak assumptions about the blurring filter and is able to undo a wide variety of blurring degradations. To overcome the ill-posedness of the blind image deblurring problem, the method includes a learning technique which initiall...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 1 vom: 01. Jan., Seite 36-52
1. Verfasser: Almeida, Mariana S C (VerfasserIn)
Weitere Verfasser: Almeida, Luís B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM191016918
003 DE-627
005 20250210175934.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2031231  |2 doi 
028 5 2 |a pubmed25n0637.xml 
035 |a (DE-627)NLM191016918 
035 |a (NLM)19717362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Almeida, Mariana S C  |e verfasserin  |4 aut 
245 1 0 |a Blind and semi-blind deblurring of natural images 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.02.2010 
500 |a Date Revised 16.12.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A method for blind image deblurring is presented. The method only makes weak assumptions about the blurring filter and is able to undo a wide variety of blurring degradations. To overcome the ill-posedness of the blind image deblurring problem, the method includes a learning technique which initially focuses on the main edges of the image and gradually takes details into account. A new image prior, which includes a new edge detector, is used. The method is able to handle unconstrained blurs, but also allows the use of constraints or of prior information on the blurring filter, as well as the use of filters defined in a parametric manner. Furthermore, it works in both single-frame and multiframe scenarios. The use of constrained blur models appropriate to the problem at hand, and/or of multiframe scenarios, generally improves the deblurring results. Tests performed on monochrome and color images, with various synthetic and real-life degradations, without and with noise, in single-frame and multiframe scenarios, showed good results, both in subjective terms and in terms of the increase of signal to noise ratio (ISNR) measure. In comparisons with other state of the art methods, our method yields better results, and shows to be applicable to a much wider range of blurs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Almeida, Luís B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 1 vom: 01. Jan., Seite 36-52  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:1  |g day:01  |g month:01  |g pages:36-52 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2031231  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 1  |b 01  |c 01  |h 36-52