Polyelectrolyte multilayer films built from poly(L-lysine) and a two-component anionic polysaccharide blend

The buildup of polyelectrolyte multilayer films made from poly(L-lysine) (PLL) as a polycation and from a blend of two anionic polysaccharides, namely, beta-1,3 glycan sulfate (GlyS) and alginate (Alg), was investigated as a function of the mass fraction, x, of GlyS in the blend, at a constant total...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 25(2009), 6 vom: 09. Apr., Seite 3593-600
1. Verfasser: Ball, Vincent (VerfasserIn)
Weitere Verfasser: Bernsmann, Falk, Betscha, Cosette, Maechling, Clarisse, Kauffmann, Serge, Senger, Bernard, Voegel, Jean-Claude, Schaaf, Pierre, Benkirane-Jessel, Nadia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Alginates Anions Cations Electrolytes Polysaccharides Proteoglycans Receptors, Transforming Growth Factor beta Sulfates mehr... betaglycan 145170-29-2 Polylysine 25104-18-1
Beschreibung
Zusammenfassung:The buildup of polyelectrolyte multilayer films made from poly(L-lysine) (PLL) as a polycation and from a blend of two anionic polysaccharides, namely, beta-1,3 glycan sulfate (GlyS) and alginate (Alg), was investigated as a function of the mass fraction, x, of GlyS in the blend, at a constant total weight concentration in polyanions. We find that the film thickness, after the deposition of a given number of layer pairs, reaches a minimum for x values lower than 0.1 (the position of this minimum could not be more precisely localized) and that the film thickness at intermediate values of x is the same as that of films built at the same concentration of GlyS in the absence of Alg (pure GlyS solution). Infrared spectroscopy in the attenuated total reflection mode shows that the weight fraction of GlyS in the multilayer films is much higher than its weight fraction, x, in the blend used to build the film. This preferential incorporation of GlyS over Alg is related to preferential interactions of GlyS as compared to Alg with PLL in solution, as measured by means of isothermal titration calorimetry. We also demonstrate that GlyS is able to displace Alg almost quantitatively from (PLL/Alg)n films but that in contrast Alg is not able to exchange GlyS from (PLL/GlyS)n films. These results, which combine adsorption from blended polyanion solutions, exchange of one polyanion already present in the film by the other in solution, and thermodynamic measurements, suggest that sulfated polymers are able to interact with polycations preferentially over polymers carrying carboxylated charged groups. These results give a first structural basis to the mechanism of preferential incorporation of a given polyanion with respect to another
Beschreibung:Date Completed 15.09.2009
Date Revised 26.08.2009
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la803730j