Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)

Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 6 vom: 09. Apr., Seite 3381-6
1. Verfasser: Benhabib, Karim (VerfasserIn)
Weitere Verfasser: Town, Raewyn M, van Leeuwen, Herman P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Colloids Latex Organic Chemicals Atrazine QJA9M5H4IM
Beschreibung
Zusammenfassung:Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the coupled diffusion of free and particle-bound atrazine toward the solid/sample solution interface. In the eventual equilibrium the total atrazine concentration in the solid phase is dictated by the solid phase/water partition coefficient (K(sw)) and the concentration of the free atrazine in the sample solution. These observations demonstrate that the nanoparticles do not enter the solid phase. The experimental data show that the rate of release of sorbed atrazine from the latex particles is fast on the effective time scale of the microextraction process. A lability criterion is derived to quantitatively describe the relative rates of these two processes. All together, the results indicate that SPME has a strong potential for dynamic speciation analysis of organic compounds in media containing sorbing nanoparticles
Beschreibung:Date Completed 15.09.2009
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la803499d