Ordering of Fe(3)O(4) nanoparticles in polyelectrolyte multilayer films

In our work we have focused on the incorporation of magnetite nanoparticles (NPs) into poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) polyelectrolyte multilayers (PEMs). The main goal of presented studies was to control the two-dimentional ordering of NPs within polyelectrolyte films...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 17 vom: 01. Sept., Seite 10292-7
1. Verfasser: Kolasinska, Marta (VerfasserIn)
Weitere Verfasser: Gutberlet, Thomas, Krastev, Rumen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Electrolytes Ferric Compounds Membranes, Artificial Polymers Quartz 14808-60-7 ferric oxide 1K09F3G675
Beschreibung
Zusammenfassung:In our work we have focused on the incorporation of magnetite nanoparticles (NPs) into poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) polyelectrolyte multilayers (PEMs). The main goal of presented studies was to control the two-dimentional ordering of NPs within polyelectrolyte films. The ordering of NPs depended on the treatment of the underlying polyelectrolyte films. The NPs were uniformly distributed in freshly prepared samples leading to an interfacial mixture of polyelectrolytes and particles, while a highly concentrated layer of NP was formed only when the PEMs were exposed to elevated temperature after their preparation. The observed effect was correlated to glass-melt phase transitions of the PEMs. Such ordering of functionalized species in a polymer matrix may enhance the response from the studied nanocomposites
Beschreibung:Date Completed 03.11.2009
Date Revised 19.11.2015
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la9011185