Two-dimensional multilabel active learning with an efficient online adaptation model for image classification

Conventional active learning dynamically constructs the training set only along the sample dimension. While this is the right strategy in binary classification, it is suboptimal for multilabel image classification. We argue that for each selected sample, only some effective labels need to be annotat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 10 vom: 16. Okt., Seite 1880-97
1. Verfasser: Qi, Guo-Jun (VerfasserIn)
Weitere Verfasser: Hua, Xian-Sheng, Rui, Yong, Tang, Jinhui, Zhang, Hong-Jiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM190819316
003 DE-627
005 20231223190019.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.218  |2 doi 
028 5 2 |a pubmed24n0636.xml 
035 |a (DE-627)NLM190819316 
035 |a (NLM)19696456 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi, Guo-Jun  |e verfasserin  |4 aut 
245 1 0 |a Two-dimensional multilabel active learning with an efficient online adaptation model for image classification 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2009 
500 |a Date Revised 21.08.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Conventional active learning dynamically constructs the training set only along the sample dimension. While this is the right strategy in binary classification, it is suboptimal for multilabel image classification. We argue that for each selected sample, only some effective labels need to be annotated while others can be inferred by exploring the label correlations. The reason is that the contributions of different labels to minimizing the classification error are different due to the inherent label correlations. To this end, we propose to select sample-label pairs, rather than only samples, to minimize a multilabel Bayesian classification error bound. We call it two-dimensional active learning because it considers both the sample dimension and the label dimension. Furthermore, as the number of training samples increases rapidly over time due to active learning, it becomes intractable for the offline learner to retrain a new model on the whole training set. So we develop an efficient online learner to adapt the existing model with the new one by minimizing their model distance under a set of multilabel constraints. The effectiveness and efficiency of the proposed method are evaluated on two benchmark data sets and a realistic image collection from a real-world image sharing Web site-Corbis 
650 4 |a Journal Article 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
700 1 |a Rui, Yong  |e verfasserin  |4 aut 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
700 1 |a Zhang, Hong-Jiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 10 vom: 16. Okt., Seite 1880-97  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:10  |g day:16  |g month:10  |g pages:1880-97 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.218  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 10  |b 16  |c 10  |h 1880-97