Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation, and recognition using knowledge propagation
We present a method to learn probabilistic object models (POMs) with minimal supervision, which exploit different visual cues and perform tasks such as classification, segmentation, and recognition. We formulate this as a structure induction and learning task and our strategy is to learn and combine...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 10 vom: 16. Okt., Seite 1747-61 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Online verfügbar |
Volltext |