Scene text recognition using similarity and a lexicon with sparse belief propagation

Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and storefronts. Relative to document recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve this problem...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 10 vom: 02. Okt., Seite 1733-46
1. Verfasser: Weinman, Jerod J (VerfasserIn)
Weitere Verfasser: Learned-Miller, Erik, Hanson, Allen R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM190819200
003 DE-627
005 20240320231851.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.38  |2 doi 
028 5 2 |a pubmed24n1337.xml 
035 |a (DE-627)NLM190819200 
035 |a (NLM)19696446 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Weinman, Jerod J  |e verfasserin  |4 aut 
245 1 0 |a Scene text recognition using similarity and a lexicon with sparse belief propagation 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2009 
500 |a Date Revised 20.03.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and storefronts. Relative to document recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve this problem is frequently ignored or used sequentially. Similarity between character images is often overlooked as useful information. Because of language priors, a recognizer may assign different labels to identical characters. Directly comparing characters to each other, rather than only a model, helps ensure that similar instances receive the same label. Lexicons improve recognition accuracy but are used post hoc. We introduce a probabilistic model for STR that integrates similarity, language properties, and lexical decision. Inference is accelerated with sparse belief propagation, a bottom-up method for shortening messages by reducing the dependency between weakly supported hypotheses. By fusing information sources in one model, we eliminate unrecoverable errors that result from sequential processing, improving accuracy. In experimental results recognizing text from images of signs in outdoor scenes, incorporating similarity reduces character recognition error by 19 percent, the lexicon reduces word recognition error by 35 percent, and sparse belief propagation reduces the lexicon words considered by 99.9 percent with a 12X speedup and no loss in accuracy 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Learned-Miller, Erik  |e verfasserin  |4 aut 
700 1 |a Hanson, Allen R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 10 vom: 02. Okt., Seite 1733-46  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:10  |g day:02  |g month:10  |g pages:1733-46 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.38  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 10  |b 02  |c 10  |h 1733-46