Role of linker groups between hydrophilic and hydrophobic moieties of cationic surfactants on oligonucleotide-surfactant interactions
The interaction between DNA and amino-acid-based surfactants with different linker groups was investigated by gel electrophoresis, ethidium bromide exclusion assays, circular dichroism, and melting temperature determinations. The studies showed that the strength of the interaction between the oligon...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 24 vom: 15. Dez., Seite 13770-5 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Cross-Linking Reagents Oligonucleotides Surface-Active Agents DNA 9007-49-2 |
Zusammenfassung: | The interaction between DNA and amino-acid-based surfactants with different linker groups was investigated by gel electrophoresis, ethidium bromide exclusion assays, circular dichroism, and melting temperature determinations. The studies showed that the strength of the interaction between the oligonucleotides and the surfactants is highly dependent on the linker of the surfactant. For ester surfactants, no significant interaction was observed for surfactant-to-DNA charge ratios up to 12. On the other hand, amide surfactants were shown to interact strongly with the oligonucleotides; these surfactants could displace up to 75% of the ethidium bromide molecules bound to the DNA and induced significant changes in the circular dichroism spectra. When comparing the headgroups of the surfactants, it was observed that surfactants with more hydrophobic headgroups (proline vs alanine) interacted more strongly with the DNA, in good agreement with previous studies |
---|---|
Beschreibung: | Date Completed 22.09.2010 Date Revised 18.11.2010 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la901546t |