Charging properties of cassiterite (alpha-SnO(2)) surfaces in NaCl and RbCl ionic media

The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 18 vom: 15. Sept., Seite 10852-62
1. Verfasser: Rosenqvist, Jörgen (VerfasserIn)
Weitere Verfasser: Machesky, Michael L, Vlcek, Lukas, Cummings, Peter T, Wesolowski, David J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Cations Chlorides Electrolytes Powders Protons Tin Compounds titanium dioxide 15FIX9V2JP mehr... Sodium Chloride 451W47IQ8X Titanium D1JT611TNE stannic oxide KM7N50LOS6 Rubidium MLT4718TJW rubidium chloride N3SHC5273S
LEADER 01000naa a22002652 4500
001 NLM190626186
003 DE-627
005 20231223185645.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1021/la901396w  |2 doi 
028 5 2 |a pubmed24n0635.xml 
035 |a (DE-627)NLM190626186 
035 |a (NLM)19673509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rosenqvist, Jörgen  |e verfasserin  |4 aut 
245 1 0 |a Charging properties of cassiterite (alpha-SnO(2)) surfaces in NaCl and RbCl ionic media 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.12.2009 
500 |a Date Revised 25.11.2016 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated that the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Cations  |2 NLM 
650 7 |a Chlorides  |2 NLM 
650 7 |a Electrolytes  |2 NLM 
650 7 |a Powders  |2 NLM 
650 7 |a Protons  |2 NLM 
650 7 |a Tin Compounds  |2 NLM 
650 7 |a titanium dioxide  |2 NLM 
650 7 |a 15FIX9V2JP  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Titanium  |2 NLM 
650 7 |a D1JT611TNE  |2 NLM 
650 7 |a stannic oxide  |2 NLM 
650 7 |a KM7N50LOS6  |2 NLM 
650 7 |a Rubidium  |2 NLM 
650 7 |a MLT4718TJW  |2 NLM 
650 7 |a rubidium chloride  |2 NLM 
650 7 |a N3SHC5273S  |2 NLM 
700 1 |a Machesky, Michael L  |e verfasserin  |4 aut 
700 1 |a Vlcek, Lukas  |e verfasserin  |4 aut 
700 1 |a Cummings, Peter T  |e verfasserin  |4 aut 
700 1 |a Wesolowski, David J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 25(2009), 18 vom: 15. Sept., Seite 10852-62  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:25  |g year:2009  |g number:18  |g day:15  |g month:09  |g pages:10852-62 
856 4 0 |u http://dx.doi.org/10.1021/la901396w  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 25  |j 2009  |e 18  |b 15  |c 09  |h 10852-62