Interaction energy and the shift in OH stretch frequency on hydrogen bonding for the H2O --> H2O, CH3OH --> H2O, and H2O --> CH3OH dimers

2009 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 31(2010), 5 vom: 15. Apr., Seite 963-72
1. Verfasser: Campen, Richard Kramer (VerfasserIn)
Weitere Verfasser: Kubicki, James D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Water 059QF0KO0R Methanol Y4S76JWI15
Beschreibung
Zusammenfassung:2009 Wiley Periodicals, Inc.
The ability to use calculated OH frequencies to assign experimentally observed peaks in hydrogen bonded systems hinges on the accuracy of the calculation. Here we test the ability of several commonly employed model chemistries--HF, MP2, and several density functionals paired with the 6-31+G(d) and 6-311++G(d,p) basis sets--to calculate the interaction energy (D(e)) and shift in OH stretch fundamental frequency on dimerization (delta(nu)) for the H(2)O --> H(2)O, CH(3)OH --> H(2)O, and H(2)O --> CH(3)OH dimers (where for X --> Y, X is the hydrogen bond donor and Y the acceptor). We quantify the error in D(e) and delta(nu) by comparison to experiment and high level calculation and, using a simple model, evaluate how error in D(e) propagates to delta(nu). We find that B3LYP and MPWB1K perform best of the density functional methods studied, that their accuracy in calculating delta(nu) is approximately 30-50 cm(-1) and that correcting for error in D(e) does little to heighten agreement between the calculated and experimental delta(nu). Accuracy of calculated delta(nu) is also shown to vary as a function of hydrogen bond donor: while the PBE and TPSS functionals perform best in the calculation of delta(nu) for the CH(3)OH --> H(2)O dimer their performance is relatively poor in describing H(2)O --> H(2)O and H(2)O --> CH(3)OH
Beschreibung:Date Completed 02.06.2010
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.21380