Morphological investigation of Mn12 single-molecule magnets adsorbed on Au(111)
We report on the adsorption of Mn(12) single-molecule magnets bearing external biphenyl groups on Au(111) surfaces after a simple dipping procedure. Topographic AFM images confirm that the biphenyl groups favor the adsorption of the molecules without the need of functionalization with thiols or thio...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 17 vom: 01. Sept., Seite 10107-15 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Manganese 42Z2K6ZL8P Gold 7440-57-5 |
Zusammenfassung: | We report on the adsorption of Mn(12) single-molecule magnets bearing external biphenyl groups on Au(111) surfaces after a simple dipping procedure. Topographic AFM images confirm that the biphenyl groups favor the adsorption of the molecules without the need of functionalization with thiols or thioether groups. The first formed molecular layer covers homogenously the whole surface, whereas further growth takes place mostly in the form of molecular wires (or aggregates) and, occasionally, as molecular islands. Interestingly, the Mn(12) core is preserved for all the cases, although its aggregation state appears to influence significantly the rigidity of the molecular aggregates. Force-volume imaging experiments have demonstrated that molecules at the second layer are stiffer, that is, more rigid, than the molecules lying at the background layer. This fact clearly reveals that the interplay of attractive and repulsive forces between molecules and the molecule-surface interaction modulate the mechanical properties of the Mn(12) single-molecule magnets upon grafting. These results are very important to understand how surface-induced morphological deformations can modify the magnetic properties of these molecular systems on the translation from the macroscopic to a surface |
---|---|
Beschreibung: | Date Completed 03.11.2009 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la900710c |