Mixed protein carriers for modulating DNA release
Aqueous mixtures of oppositely charged polyelectrolytes undergo associative phase separation, resulting in coacervation, gelation, or precipitation. This phenomenon has been exploited in forming DNA gel particles by interfacial diffusion. We report here the formation of DNA gel particles by mixing s...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 17 vom: 01. Sept., Seite 10263-70 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Drug Carriers Electrolytes Protamines Proteins Water 059QF0KO0R DNA 9007-49-2 mehr... |
Zusammenfassung: | Aqueous mixtures of oppositely charged polyelectrolytes undergo associative phase separation, resulting in coacervation, gelation, or precipitation. This phenomenon has been exploited in forming DNA gel particles by interfacial diffusion. We report here the formation of DNA gel particles by mixing solutions of double-stranded DNA with aqueous solutions containing two cationic proteins, lysozyme and protamine sulfate. The effect of the lysozyme/protamine ratio on the degree of DNA entrapment, surface morphology, swelling-deswelling behavior, and kinetics of DNA release has been investigated. By mixing the two proteins, we obtain particles that display higher loading efficiency and loading capacity values, in comparison to those obtained in single-protein systems. Examination of the release profiles has shown that in mixed protein particles, complex, dual-stage release kinetics is obtained. The overall release profile is dependent on the lysozyme/protamine ratio. The obtained profiles, or segments of them, are accuratelly fitted using the zero-order and first-order models, and the Weibull function. Fluorescence microscopy studies have suggested that the formation of these particles is associated with the conservation of the secondary structure of DNA. This study presents a new platform for controlled release of DNA from DNA gel particles formed by interfacial diffusion |
---|---|
Beschreibung: | Date Completed 03.11.2009 Date Revised 11.03.2022 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la901071v |