Electrophoretic study of the SnO2/aqueous solution interface up to 260 degrees C

An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO(2) (cassiterite)/aqueous solution (10(-3) mol kg(-1) NaCl) interface over the temperature range from 25 to 260 degrees C. Experimental techniques and methods for the calculation of zeta potent...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 14 vom: 21. Juli, Seite 8101-10
1. Verfasser: Rodriguez-Santiago, Victor (VerfasserIn)
Weitere Verfasser: Fedkin, Mark V, Wesolowski, David J, Rosenqvist, Jörgen, Lvov, Serguei N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO(2) (cassiterite)/aqueous solution (10(-3) mol kg(-1) NaCl) interface over the temperature range from 25 to 260 degrees C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO(2) were obtained for the first time. From these IEP values, the standard thermodynamic functions were calculated for the protonation-deprotonation equilibrium at the SnO(2) surface, using the 1-pK surface complexation model. It was found that the IEP values for SnO(2) decrease with increasing temperature, and this behavior is compared to the predicted values by the multisite complexation (MUSIC) model and other semitheoretical treatments, and were found to be in excellent agreement
Beschreibung:Date Completed 17.09.2009
Date Revised 14.07.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la900611u