A fast method for large-scale de novo peptide and miniprotein structure prediction
(c) 2009 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 31(2010), 4 vom: 01. März, Seite 726-38 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Peptides Proteins |
Zusammenfassung: | (c) 2009 Wiley Periodicals, Inc. Although peptides have many biological and biomedical implications, an accurate method predicting their equilibrium structural ensembles from amino acid sequences and suitable for large-scale experiments is still missing. We introduce a new approach-PEP-FOLD-to the de novo prediction of peptides and miniproteins. It first predicts, in the terms of a Hidden Markov Model-derived structural alphabet, a limited number of local conformations at each position of the structure. It then performs their assembly using a greedy procedure driven by a coarse-grained energy score. On a benchmark of 52 peptides with 9-23 amino acids, PEP-FOLD generates lowest-energy conformations within 2.8 and 2.3 A Calpha root-mean-square deviation from the full nuclear magnetic resonance structures (NMR) and the NMR rigid cores, respectively, outperforming previous approaches. For 13 miniproteins with 27-49 amino acids, PEP-FOLD reaches an accuracy of 3.6 and 4.6 A Calpha root-mean-square deviation for the most-native and lowest-energy conformations, using the nonflexible regions identified by NMR. PEP-FOLD simulations are fast-a few minutes only-opening therefore, the door to in silico large-scale rational design of new bioactive peptides and miniproteins |
---|---|
Beschreibung: | Date Completed 16.04.2010 Date Revised 03.02.2010 published: Print Citation Status MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.21365 |