Synergy between object recognition and image segmentation using the expectation-maximization algorithm

In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 8 vom: 21. Aug., Seite 1486-501
1. Verfasser: Kokkinos, Iasonas (VerfasserIn)
Weitere Verfasser: Maragos, Petros
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM189437626
003 DE-627
005 20231223183637.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.158  |2 doi 
028 5 2 |a pubmed24n0632.xml 
035 |a (DE-627)NLM189437626 
035 |a (NLM)19542581 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kokkinos, Iasonas  |e verfasserin  |4 aut 
245 1 0 |a Synergy between object recognition and image segmentation using the expectation-maximization algorithm 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2009 
500 |a Date Revised 22.06.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects. We model objects using Active Appearance Models (AAMs) as they capture both shape and appearance variation. During the E-step, the fidelity of the AAM predictions to the image is used to decide about assigning observations to the object. For this, we propose two top-down segmentation algorithms. The first starts with an oversegmentation of the image and then softly assigns image segments to objects, as in the common setting of EM. The second uses curve evolution to minimize a criterion derived from the variational interpretation of EM and introduces AAMs as shape priors. For the M-step, we derive AAM fitting equations that accommodate segmentation information, thereby allowing for the automated treatment of occlusions. Apart from top-down segmentation results, we provide systematic experiments on object detection that validate the merits of our joint segmentation and recognition approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Maragos, Petros  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 8 vom: 21. Aug., Seite 1486-501  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:8  |g day:21  |g month:08  |g pages:1486-501 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.158  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 8  |b 21  |c 08  |h 1486-501