Automatic summarization of changes in biological image sequences using algorithmic information theory

An algorithmic information-theoretic method is presented for object-level summarization of meaningful changes in image sequences. Object extraction and tracking data are represented as an attributed tracking graph (ATG). Time courses of object states are compared using an adaptive information distan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 8 vom: 21. Aug., Seite 1386-403
1. Verfasser: Cohen, Andrew R (VerfasserIn)
Weitere Verfasser: Bjornsson, Christopher S, Temple, Sally, Banker, Gary, Roysam, Badrinath
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Kinesins EC 3.6.4.4
LEADER 01000naa a22002652 4500
001 NLM189437553
003 DE-627
005 20231223183637.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.162  |2 doi 
028 5 2 |a pubmed24n0632.xml 
035 |a (DE-627)NLM189437553 
035 |a (NLM)19542574 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cohen, Andrew R  |e verfasserin  |4 aut 
245 1 0 |a Automatic summarization of changes in biological image sequences using algorithmic information theory 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2009 
500 |a Date Revised 03.12.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a An algorithmic information-theoretic method is presented for object-level summarization of meaningful changes in image sequences. Object extraction and tracking data are represented as an attributed tracking graph (ATG). Time courses of object states are compared using an adaptive information distance measure, aided by a closed-form multidimensional quantization. The notion of meaningful summarization is captured by using the gap statistic to estimate the randomness deficiency from algorithmic statistics. The summary is the clustering result and feature subset that maximize the gap statistic. This approach was validated on four bioimaging applications: 1) It was applied to a synthetic data set containing two populations of cells differing in the rate of growth, for which it correctly identified the two populations and the single feature out of 23 that separated them; 2) it was applied to 59 movies of three types of neuroprosthetic devices being inserted in the brain tissue at three speeds each, for which it correctly identified insertion speed as the primary factor affecting tissue strain; 3) when applied to movies of cultured neural progenitor cells, it correctly distinguished neurons from progenitors without requiring the use of a fixative stain; and 4) when analyzing intracellular molecular transport in cultured neurons undergoing axon specification, it automatically confirmed the role of kinesins in axon specification 
650 4 |a Journal Article 
650 7 |a Kinesins  |2 NLM 
650 7 |a EC 3.6.4.4  |2 NLM 
700 1 |a Bjornsson, Christopher S  |e verfasserin  |4 aut 
700 1 |a Temple, Sally  |e verfasserin  |4 aut 
700 1 |a Banker, Gary  |e verfasserin  |4 aut 
700 1 |a Roysam, Badrinath  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 8 vom: 21. Aug., Seite 1386-403  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:8  |g day:21  |g month:08  |g pages:1386-403 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.162  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 8  |b 21  |c 08  |h 1386-403