Appearance derivatives for isonormal clustering of scenes

A new technique is proposed for scene analysis, called "appearance clustering." The key result of this approach is that the scene points can be clustered according to their surface normals, even when the geometry, material, and lighting are all unknown. This is achieved by analyzing an ima...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 8 vom: 21. Aug., Seite 1375-85
Auteur principal: Koppal, Sanjeev J (Auteur)
Autres auteurs: Narasimhan, Srinivasa G
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM189437545
003 DE-627
005 20250210125549.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.148  |2 doi 
028 5 2 |a pubmed25n0632.xml 
035 |a (DE-627)NLM189437545 
035 |a (NLM)19542573 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Koppal, Sanjeev J  |e verfasserin  |4 aut 
245 1 0 |a Appearance derivatives for isonormal clustering of scenes 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2009 
500 |a Date Revised 22.06.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A new technique is proposed for scene analysis, called "appearance clustering." The key result of this approach is that the scene points can be clustered according to their surface normals, even when the geometry, material, and lighting are all unknown. This is achieved by analyzing an image sequence of a scene as it is illuminated by a smoothly moving distant light source. In such a scenario, the brightness measurements at each pixel form a "continuous appearance profile." When the source path follows an unstructured trajectory (obtained, say, by smoothly hand-waving a light source), the locations of the extrema of the appearance profile provide a strong cue for the scene point's surface normal. Based on this observation, a simple transformation of the appearance profiles and a distance metric are introduced that, together, can be used with any unsupervised clustering algorithm to obtain isonormal clusters of a scene. We support our algorithm empirically with comprehensive simulations of the Torrance-Sparrow and Oren-Nayar analytic BRDFs, as well as experiments with 25 materials obtained from the MERL database of measured BRDFs. The method is also demonstrated on 45 examples from the CURET database, obtaining clusters on scenes with real textures such as artificial grass and ceramic tile, as well as anisotropic materials such as satin and velvet. The results of applying our algorithm to indoor and outdoor scenes containing a variety of complex geometry and materials are shown. As an example application, isonormal clusters are used for lighting-consistent texture transfer. Our algorithm is simple and does not require any complex lighting setup for data collection 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Narasimhan, Srinivasa G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 8 vom: 21. Aug., Seite 1375-85  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:31  |g year:2009  |g number:8  |g day:21  |g month:08  |g pages:1375-85 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.148  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 8  |b 21  |c 08  |h 1375-85