Efficient sparse kernel feature extraction based on partial least squares

The presence of irrelevant features in training data is a significant obstacle for many machine learning tasks. One approach to this problem is to extract appropriate features and, often, one selects a feature extraction method based on the inference algorithm. Here, we formalize a general framework...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 8 vom: 21. Aug., Seite 1347-61
1. Verfasser: Dhanjal, Charanpal (VerfasserIn)
Weitere Verfasser: Gunn, Steve R, Shawe-Taylor, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM189437529
003 DE-627
005 20250210125549.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.171  |2 doi 
028 5 2 |a pubmed25n0632.xml 
035 |a (DE-627)NLM189437529 
035 |a (NLM)19542571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dhanjal, Charanpal  |e verfasserin  |4 aut 
245 1 0 |a Efficient sparse kernel feature extraction based on partial least squares 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2009 
500 |a Date Revised 22.06.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The presence of irrelevant features in training data is a significant obstacle for many machine learning tasks. One approach to this problem is to extract appropriate features and, often, one selects a feature extraction method based on the inference algorithm. Here, we formalize a general framework for feature extraction, based on Partial Least Squares, in which one can select a user-defined criterion to compute projection directions. The framework draws together a number of existing results and provides additional insights into several popular feature extraction methods. Two new sparse kernel feature extraction methods are derived under the framework, called Sparse Maximal Alignment (SMA) and Sparse Maximal Covariance (SMC), respectively. Key advantages of these approaches include simple implementation and a training time which scales linearly in the number of examples. Furthermore, one can project a new test example using only k kernel evaluations, where k is the output dimensionality. Computational results on several real-world data sets show that SMA and SMC extract features which are as predictive as those found using other popular feature extraction methods. Additionally, on large text retrieval and face detection data sets, they produce features which match the performance of the original ones in conjunction with a Support Vector Machine 
650 4 |a Journal Article 
700 1 |a Gunn, Steve R  |e verfasserin  |4 aut 
700 1 |a Shawe-Taylor, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 31(2009), 8 vom: 21. Aug., Seite 1347-61  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:8  |g day:21  |g month:08  |g pages:1347-61 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.171  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 8  |b 21  |c 08  |h 1347-61