Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference
In this paper, a simple method to fabricate a three-dimensional (3D) nanostructure decorated with Ag nanoparticles for surface-enhanced Raman scattering (SERS) is demonstrated. Highly ordered porous anodic aluminum oxide (AAO) templates were employed to construct these compound nanostructures. First...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 25(2009), 19 vom: 06. Okt., Seite 11869-73 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Silver 3M4G523W1G Aluminum Oxide LMI26O6933 |
Zusammenfassung: | In this paper, a simple method to fabricate a three-dimensional (3D) nanostructure decorated with Ag nanoparticles for surface-enhanced Raman scattering (SERS) is demonstrated. Highly ordered porous anodic aluminum oxide (AAO) templates were employed to construct these compound nanostructures. First, the AAO templates were fabricated using a two-step anodization approach. Second, an alternating current (AC) electrochemical deposition was used to fill AAO templates with Ag nanoparticles. Taking 4-mercaptopyridine (4-MPy) as the probing molecule, high-quality SERS spectra were observed. The UV-vis mirror reflection spectra were measured to investigate the surface plasma resonance (SPR) absorbance. An interesting phenomenon of SPR-affected thin film interference was observed. SERS mapping was performed to characterize the homogeneity of as-prepared substrates. Good homogeneity and stability make these substrates good candidates for SERS spectroscopy |
---|---|
Beschreibung: | Date Completed 03.12.2009 Date Revised 25.11.2016 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la901521j |