Oxygen plasma treatment of polystyrene and Zeonor : substrates for adhesion of patterned cells
Plastic substrates made of polystyrene (PS) and Zeonor 1060R were treated with oxygen plasma to introduce polar groups (e.g., carbonyl and carboxylic acid) at the surface that render these materials hydrophilic and promote patterned adhesion of HeLa cells. Resultant surfaces were characterized using...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 25(2009), 12 vom: 16. Juni, Seite 7169-76 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Polystyrenes Oxygen S88TT14065 |
Zusammenfassung: | Plastic substrates made of polystyrene (PS) and Zeonor 1060R were treated with oxygen plasma to introduce polar groups (e.g., carbonyl and carboxylic acid) at the surface that render these materials hydrophilic and promote patterned adhesion of HeLa cells. Resultant surfaces were characterized using contact angle goniometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) to monitor changes in wettability, nanoscale topography, and chemical composition. Biocompatibility of the plastic surfaces was verified through fluorescence microscopy using three fluorophores, Alexa Fluor 488 conjugated to Annexin V, Hoechst 33258, and propidium iodide, indicating cells that undergo apoptosis and necrosis, respectively. The best cell growth was observed on PS treated at 5 W/sccm, for which the viability of adhering HeLa cells exceeded 90%. Patterning was accomplished using an elastomeric microcapillary system (microCS) made of poly(dimethylsiloxane) (PDMS) that consisted of a set of parallel channels to align cells in linear fashion. Densely populated bands were obtained on substrates of both plastic materials when the culture medium contained >2 x 10(5) cells/mL |
---|---|
Beschreibung: | Date Completed 17.08.2009 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la9001972 |