Molecular order in Langmuir-Blodgett monolayers of metal-ligand surfactants probed by sum frequency generation

Molecular organization of Langmuir-Blodgett (LB) monolayers of novel copper-containing metal-ligand surfactants was characterized by the surface-selective vibrational sum frequency generation (SFG) spectroscopy. The orientational and conformational order inferred from the SFG peak amplitudes and lin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 12 vom: 16. Juni, Seite 6880-6
1. Verfasser: Jayathilake, Himali D (VerfasserIn)
Weitere Verfasser: Driscoll, Jeffery A, Bordenyuk, Andrey N, Wu, Libo, da Rocha, Sandro R P, Verani, Claudio N, Benderskii, Alexander V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Molecular organization of Langmuir-Blodgett (LB) monolayers of novel copper-containing metal-ligand surfactants was characterized by the surface-selective vibrational sum frequency generation (SFG) spectroscopy. The orientational and conformational order inferred from the SFG peak amplitudes and line shapes were correlated with the two-dimensional phases of the monolayers observed in the compression isotherms. The octadecyl-pyridin-2-ylmethyl-amine (L(PyC18)) ligand by itself shows good amphiphilic properties, as indicated by the high monolayer collapse pressure at the air/water interface, but its LB films transferred onto fused silica exhibit a high degree of trans-gauche conformational disorder in the alkyl tails. Coordination of copper(II) ions to the chelating head group enhances the molecular alignment and reduces the fraction of gauche defects of the alkyl chains. Monolayers of single-tail (L(PyC18)Cu(II)Cl(2)) and double-tail [(L(PyC18))(2)Cu(II)]Cl(2) metallosurfactants show distinctly different behavior of their molecular organization as a function of the area per molecule. Our observations suggest metal-ligand interactions as a pathway to induce molecular order in LB monolayer films
Beschreibung:Date Completed 17.08.2009
Date Revised 09.06.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la900168p