Methanol electrooxidation on PtRu bulk alloys and carbon-supported PtRu nanoparticle catalysts : a quantitative DEMS study

Methanol electrooxidation on smooth Pt and PtRu bulk alloys and carbon-supported Pt and PtRu nanoparticle catalysts has been studied using cyclic voltammetry and potential step chronoamperometry combined with differential electrochemical mass spectrometry (DEMS). The current efficiencies for generat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 13 vom: 07. Juli, Seite 7725-35
1. Verfasser: Wang, Hongsen (VerfasserIn)
Weitere Verfasser: Alden, Laif R, DiSalvo, F J, Abruña, Héctor D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Methanol electrooxidation on smooth Pt and PtRu bulk alloys and carbon-supported Pt and PtRu nanoparticle catalysts has been studied using cyclic voltammetry and potential step chronoamperometry combined with differential electrochemical mass spectrometry (DEMS). The current efficiencies for generated CO2 and methyl formate were calculated from Faradaic current (coulometric charge) and mass spectrometric currents (charges) at m/z=44 and m/z=60. The effects of Ru content in PtRu catalysts, catalyst loading/roughness, and the concentration of sulfuric acid as supporting electrolyte on the reaction kinetics and product distribution during methanol electrooxidation have been investigated. The results indicate that Pt-rich PtRu alloys and carbon-supported PtRu catalysts with ca. 20 atom % Ru content exhibit the highest catalytic activity for methanol electrooxidation, that is, the highest Faradaic current and the highest current efficiency for CO2 generation at low applied potentials. As the catalyst loading/roughness increases, the current efficiency for CO2 formation increases due to the further oxidation of soluble intermediates (formaldehyde and formic acid). At high concentrations of sulfuric acid, the electrooxidation of methanol was suppressed; both the oxidative current and the current efficiency of CO2 decreased, likely due to sulfate/bisulfate adsorption
Beschreibung:Date Completed 14.09.2009
Date Revised 30.06.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la900305k