Plant neighborhood control of arbuscular mycorrhizal community composition

Arbuscular mycorrhizal fungi (AMF) are important root symbionts that can provide benefits to plant hosts, yet we understand little about how neighboring hosts in a plant community contribute to the composition of the AMF community. We hypothesized that the composition of the plant neighborhood, incl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 183(2009), 4 vom: 01., Seite 1188-1200
1. Verfasser: Hausmann, Natasha Teutsch (VerfasserIn)
Weitere Verfasser: Hawkes, Christine V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:Arbuscular mycorrhizal fungi (AMF) are important root symbionts that can provide benefits to plant hosts, yet we understand little about how neighboring hosts in a plant community contribute to the composition of the AMF community. We hypothesized that the composition of the plant neighborhood, including the identities of both host and neighbor, would alter AMF community composition. We tested this in a glasshouse experiment in which a native perennial grass (Nassella pulchra) and three annual grasses (Avena barbata, Bromus hordeaceaous and Vulpia microstachys) were grown in two neighborhoods: conspecific monocultures and heterospecific perennial-annual mixtures. To identify AMF taxa colonizing plant roots, we used a combination of terminal restriction fragment length polymorphism and cloning. Both host and neighbor were important in structuring AMF communities. Unique AMF communities were associated with each plant host in monoculture. In heterospecific neighborhoods, the annual neighbors V. microstachys, A. barbata, and B. hordeaceus influenced N. pulchra AMF in different ways (synergistic, controlling, or neutral) and the reciprocal effect was not always symmetric. Our findings support a community approach to AMF studies, which can be used to increase our understanding of processes such as invasion and succession
Beschreibung:Date Completed 02.12.2009
Date Revised 08.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2009.02882.x