Quantitative Bayesian predictions of source water concentration for QMRA from presence/absence data for E. coli O157:H7

A hierarchical Bayesian framework was applied for describing variability in pathogen concentration (with associated uncertainty) from presence/absence observations for E. coli O157:H7. Laboratory spiking experiments (method performance) and environmental sample assays were undertaken for a surface d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 59(2009), 11 vom: 07., Seite 2245-52
1. Verfasser: Petterson, S R (VerfasserIn)
Weitere Verfasser: Dumoutier, N, Loret, J F, Ashbolt, N J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM189018755
003 DE-627
005 20231223182920.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2009.264  |2 doi 
028 5 2 |a pubmed24n0630.xml 
035 |a (DE-627)NLM189018755 
035 |a (NLM)19494465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Petterson, S R  |e verfasserin  |4 aut 
245 1 0 |a Quantitative Bayesian predictions of source water concentration for QMRA from presence/absence data for E. coli O157:H7 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2009 
500 |a Date Revised 04.06.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A hierarchical Bayesian framework was applied for describing variability in pathogen concentration (with associated uncertainty) from presence/absence observations for E. coli O157:H7. Laboratory spiking experiments (method performance) and environmental sample assays were undertaken for a surface drinking water source in France. The concentration estimates were strongly dependent upon the assumed statistical model used (gamma, log-gamma or log-gamma constrained), highlighting the need for a solid theoretical basis for model choice. Bayesian methods facilitate the incorporation of additional data into the statistical analysis; this was illustrated using faecal indicator results of E. coli (Colilert) to reduce the posterior parameter uncertainty and improve model stability. While conceptually simple, application of these methods is still specialised, hence there is a need for the development of data analysis tools to make Bayesian simulation techniques more accessible for QMRA practitioners 
650 4 |a Journal Article 
700 1 |a Dumoutier, N  |e verfasserin  |4 aut 
700 1 |a Loret, J F  |e verfasserin  |4 aut 
700 1 |a Ashbolt, N J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 59(2009), 11 vom: 07., Seite 2245-52  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:59  |g year:2009  |g number:11  |g day:07  |g pages:2245-52 
856 4 0 |u http://dx.doi.org/10.2166/wst.2009.264  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 2009  |e 11  |b 07  |h 2245-52