Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process

A two-stage hydrogen/methane fermentation process has emerged as a feasible engineering system to recover bio-energy from wastewater. Hydrogen-producing bacteria (HPB) generate hydrogen from readily available carbohydrates, and organic acids produced during the hydrogen fermentation step can be degr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 59(2009), 11 vom: 07., Seite 2137-43
1. Verfasser: Lee, M J (VerfasserIn)
Weitere Verfasser: Song, J H, Hwang, S J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DNA Probes Sewage Hydrogen 7YNJ3PO35Z Methane OP0UW79H66
Beschreibung
Zusammenfassung:A two-stage hydrogen/methane fermentation process has emerged as a feasible engineering system to recover bio-energy from wastewater. Hydrogen-producing bacteria (HPB) generate hydrogen from readily available carbohydrates, and organic acids produced during the hydrogen fermentation step can be degraded to generate methane in the following step. Three strong acids, HCl, H(2)SO(4), and HNO(3), were tested to determine the appropriate pre-treatment method for enhanced hydrogen production. The hydrogen production rates of 230, 290, and 20 L/kg(-glucose)/day was observed for the sludge treated with HCl, H(2)SO(4), and HNO(3), respectively, indicating that the acid pre-treatment using either HCl or H(2)SO(4) resulted in a significant increase in hydrogen production. The fluorescent in situ hybridization method indicated that the acid pre-treatment selectively enriched HPB including Clostridium sp. of cluster I from inoculum sludge. After hydrogen fermentation was terminated, the sludge was introduced to a methane fermentation reactor. This experiment showed methane production rates of 100, 30, and 13 L/kg(-glucose)/day for the sludge pre-treated with HCl, H(2)SO(4), and HNO(3), respectively, implying that both sulfate and nitrate inhibited the activity of methane-producing bacteria. Consequently, the acid pre-treatment might be a feasible option to enhance biogas recovery in the two-stage fermentation process, and HCl was selected as the optimal strong acid for the enrichment of HPB and the continuous production of methane
Beschreibung:Date Completed 31.08.2009
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2009.236