Quantitative description of the effect of stratification on dormancy release of grape seeds in response to various temperatures and water contents

The effect of stratification on dormancy release of grape seeds crossing from the sub- to the supraoptimal range of temperatures and water contents was analysed by modified threshold models. The stratification impacted on dormancy release in three different ways: (i) dormancy was consistently releas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 60(2009), 12 vom: 22., Seite 3397-406
1. Verfasser: Wang, W Q (VerfasserIn)
Weitere Verfasser: Song, S Q, Li, S H, Gan, Y Y, Wu, J H, Cheng, H Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water 059QF0KO0R
Beschreibung
Zusammenfassung:The effect of stratification on dormancy release of grape seeds crossing from the sub- to the supraoptimal range of temperatures and water contents was analysed by modified threshold models. The stratification impacted on dormancy release in three different ways: (i) dormancy was consistently released with prolonged stratification time when stratified at temperatures of <15 degrees C; (ii) at 15 degrees C and 20 degrees C, the stratification effect initially increased, and then decreased with extended time; and (iii) stratification at 25 degrees C only reduced germinable seeds. These behaviours indicated that stratification could not only release primary dormancy but also induce secondary dormancy in grape seed. The rate of dormancy release changed linearly in two phases, while induction increased exponentially with increasing temperature. The thermal time approaches effectively quantified dormancy release only at suboptimal temperature, but a quantitative method to integrate the occurrence of dormancy release and induction at the same time could describe it well at either sub- or supraoptimal temperatures. The regression with the percentage of germinable seeds versus stratification temperature or water content within both the sub- and supraoptimal range revealed how the optimal temperature (T(so)) and water content (W(so)) for stratification changed. The T(so) moved from 10.6 degrees C to 5.3 degrees C with prolonged time, while W(so) declined from >0.40 g H2O g DW(-1) at 5 degrees C to approximately 0.23 g H2O g DW(-1) at 30 degrees C. Dormancy release in grape seeds can occur across a very wide range of conditions, which has important implications for their ability to adapt to a changeable environment in the wild
Beschreibung:Date Completed 02.12.2009
Date Revised 22.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erp178