A fast optimization transfer algorithm for image inpainting in wavelet domains

A wavelet inpainting problem refers to the problem of filling in missing wavelet coefficients in an image. A variational approach was used by Chan et al. The resulting functional was minimized by the gradient descent method. In this paper, we use an optimization transfer technique which involves rep...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 18(2009), 7 vom: 02. Juli, Seite 1467-76
1. Verfasser: Chan, Raymond H (VerfasserIn)
Weitere Verfasser: Wen, You-Wei, Yip, Andy M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM188825126
003 DE-627
005 20231223182606.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2019806  |2 doi 
028 5 2 |a pubmed24n0629.xml 
035 |a (DE-627)NLM188825126 
035 |a (NLM)19473942 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chan, Raymond H  |e verfasserin  |4 aut 
245 1 2 |a A fast optimization transfer algorithm for image inpainting in wavelet domains 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2009 
500 |a Date Revised 16.06.2009 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A wavelet inpainting problem refers to the problem of filling in missing wavelet coefficients in an image. A variational approach was used by Chan et al. The resulting functional was minimized by the gradient descent method. In this paper, we use an optimization transfer technique which involves replacing their univariate functional by a bivariate functional by adding an auxiliary variable. Our bivariate functional can be minimized easily by alternating minimization: for the auxiliary variable, the minimum has a closed form solution, and for the original variable, the minimization problem can be formulated as a classical total variation (TV) denoising problem and, hence, can be solved efficiently using a dual formulation. We show that our bivariate functional is equivalent to the original univariate functional. We also show that our alternating minimization is convergent. Numerical results show that the proposed algorithm is very efficient and outperforms that of Chan et al 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wen, You-Wei  |e verfasserin  |4 aut 
700 1 |a Yip, Andy M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 18(2009), 7 vom: 02. Juli, Seite 1467-76  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:18  |g year:2009  |g number:7  |g day:02  |g month:07  |g pages:1467-76 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2019806  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2009  |e 7  |b 02  |c 07  |h 1467-76