Wavelet-based SAR image despeckling and information extraction, using particle filter

This paper proposes a new-wavelet-based synthetic aperture radar (SAR) image despeckling algorithm using the sequential Monte Carlo method. A model-based Bayesian approach is proposed. This paper presents two methods for SAR image despeckling. The first method, called WGGPF, models a prior with Gene...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 18(2009), 10 vom: 02. Okt., Seite 2167-84
1. Verfasser: Gleich, Dusan (VerfasserIn)
Weitere Verfasser: Datcu, Mihai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM188825088
003 DE-627
005 20231223182606.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2023729  |2 doi 
028 5 2 |a pubmed24n0629.xml 
035 |a (DE-627)NLM188825088 
035 |a (NLM)19473938 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gleich, Dusan  |e verfasserin  |4 aut 
245 1 0 |a Wavelet-based SAR image despeckling and information extraction, using particle filter 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.12.2009 
500 |a Date Revised 11.09.2009 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper proposes a new-wavelet-based synthetic aperture radar (SAR) image despeckling algorithm using the sequential Monte Carlo method. A model-based Bayesian approach is proposed. This paper presents two methods for SAR image despeckling. The first method, called WGGPF, models a prior with Generalized Gaussian (GG) probability density function (pdf) and the second method, called WGMPF, models prior with a Generalized Gaussian Markov random field (GGMRF). The likelihood pdf is modeled using a Gaussian pdf. The GGMRF model is used because it enables texture parameter estimation. The prior is modeled using GG pdf, when texture parameters are not needed. A particle filter is used for drawing particles from the prior for different shape parameters of GG pdf. When the GGMRF prior is used, the particles are drawn from prior in order to estimate noise-free wavelet coefficients and for those coefficients the texture parameter is changed in order to obtain the best textural parameters. The texture parameters are changed for a predefined set of shape parameters of GGMRF. The particles with the highest weights represents the final noise-free estimate with corresponding textural parameters. The despeckling algorithms are compared with the state-of-the-art methods using synthetic and real SAR data. The experimental results show that the proposed despeckling algorithms efficiently remove noise and proposed methods are comparable with the state-of-the-art methods regarding objective measurements. The proposed WGMPF preserves textures of the real, high-resolution SAR images well 
650 4 |a Journal Article 
700 1 |a Datcu, Mihai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 18(2009), 10 vom: 02. Okt., Seite 2167-84  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:18  |g year:2009  |g number:10  |g day:02  |g month:10  |g pages:2167-84 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2023729  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2009  |e 10  |b 02  |c 10  |h 2167-84