|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM18881549X |
003 |
DE-627 |
005 |
20231223182556.0 |
007 |
tu |
008 |
231223s2009 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0629.xml
|
035 |
|
|
|a (DE-627)NLM18881549X
|
035 |
|
|
|a (NLM)19472939
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kabouris, John C
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.07.2009
|
500 |
|
|
|a Date Revised 23.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The anaerobic biodegradability of municipal primary sludge, thickened waste activated sludge (TWAS), and fat, oil, and grease (FOG) was assessed using semi-continuous-feed, laboratory-scale anaerobic digesters and compared with the ultimate degradability obtained from 120-day batch digestion at 35 degrees C. In run 1, combined primary sludge and TWAS (40/60%, volatile solids [VS] basis) were fed to digesters operated at mesophilic (35 degrees C) and thermophilic (52 degrees C) temperatures at loading rates of 0.99 and 1.46 g-VS/L x d for primary sludge and TWAS, respectively, and a hydraulic retention time (HRT) of 12 days. The volatile solids destruction values were 25.3 and 30.7% (69 and 83% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane (CH4) yields were 159 and 197 mL at the standard temperature and pressure (STP) conditions of 0 degree C and 1 atm/g-VS added or 632 and 642 mL STP/g-VS destroyed at 35 degrees C and 52 degrees C, respectively. In run 2, a mix of primary sludge, TWAS, and FOG (21/31/48%, volatile solids basis) was fed to an acid digester operated at a 1-day HRT, at 35 degrees C, and a loading rate of 52.5 g-VS/L x d. The acid-reactor effluent was fed to two parallel methane-phase reactors operated at an HRT of 12 days and maintained at 35 degrees C and 52 degrees C, respectively. After an initial period of 20 days with near-zero gas production in the acid reactor, biogas production increased and stabilized to approximately 2 mL CH4 @ STP/g-VS added, corresponding to a volatile solids destruction of 0.4%. The acid-phase reactor achieved a 43% decrease in nonsaturated fat and a 16, 26, and 20% increase of soluble COD, volatile fatty acids, and ammonia, respectively. The methane-phase volatile solids destruction values in run 2 were 45 and 51% (85 and 97% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane yields for the methane-phase reactors were 473 and 551 mL @ STP/g-VS added, which is approximately 3 times larger compared with run 1, or 1040 and 1083 mL @ STP/g-VS destroyed, at 35 degrees C and 52 degrees C, respectively. The results indicate that, when co-digesting municipal sludge and FOG, a large FOG organic load fraction could have a profound effect on the methane gas yield
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Fats
|2 NLM
|
650 |
|
7 |
|a Oils
|2 NLM
|
650 |
|
7 |
|a Sewage
|2 NLM
|
700 |
1 |
|
|a Tezel, Ulas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pavlostathis, Spyros G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Engelmann, Michael
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dulaney, James A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Todd, Allen C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gillette, Robert A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 81(2009), 5 vom: 05. Mai, Seite 476-85
|w (DE-627)NLM098214292
|x 1554-7531
|7 nnns
|
773 |
1 |
8 |
|g volume:81
|g year:2009
|g number:5
|g day:05
|g month:05
|g pages:476-85
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 81
|j 2009
|e 5
|b 05
|c 05
|h 476-85
|