Adhesion of two physically contacting planar substrates coated with layer-by-layer assembled films

Adhesives composed of synthetic and low-cost molecules that are based on simple chemical principles are attractive because of their versatility. In this article, we report adhesion between two planar substrates coated with layer-by-layer (LbL) assembled films of cationic poly(diallyldimethylammonium...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 17 vom: 01. Sept., Seite 9824-30
1. Verfasser: Matsukuma, Daisuke (VerfasserIn)
Weitere Verfasser: Aoyagi, Takao, Serizawa, Takeshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Adhesives composed of synthetic and low-cost molecules that are based on simple chemical principles are attractive because of their versatility. In this article, we report adhesion between two planar substrates coated with layer-by-layer (LbL) assembled films of cationic poly(diallyldimethylammonium chloride) (PDDA) and anionic poly(sodium styrenesulfonate) (PSS) and perform lap shear measurements of the adhered substrates. Films prepared on the substrates functioned as adhesives when one substrate coated with the PDDA-surface film contacted the other surface coated with the PSS-surface film under adequate pressure in the presence of water droplets, suggesting that two films adhered on the basis of polyion complex formation. Observations suggested that the adhesives failed at the substrate-film interface rather than at the bulk films. The adhesion was compared between film-coated substrates and noncoated ones. Confocal laser scanning microscopic observation of adhesives composed of fluorescently labeled poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) revealed that the labeled PAH assembled on one substrate was well dispersed, even in a nonlabeled film assembled on another substrate. It was therefore confirmed that after adhesion in the presence of the water component, the polyelectrolytes became intermixed between the glassy films, resulting in changes in the adhesive structure at the substrate-film interface
Beschreibung:Date Completed 03.11.2009
Date Revised 26.08.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la900924w