|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM188555536 |
003 |
DE-627 |
005 |
20250210102301.0 |
007 |
tu |
008 |
231223s2009 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0629.xml
|
035 |
|
|
|a (DE-627)NLM188555536
|
035 |
|
|
|a (NLM)19445329
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mueller, Sherry A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.05.2009
|
500 |
|
|
|a Date Revised 23.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor (r2 values ranged from < 0.01 to 0.47), and the ATP method was not sufficiently sensitive to measure counts below approximately 10(4) CFU/mL
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Adenosine Triphosphate
|2 NLM
|
650 |
|
7 |
|a 8L70Q75FXE
|2 NLM
|
700 |
1 |
|
|a Anderson, James E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Byung R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ball, James C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water environment research : a research publication of the Water Environment Federation
|d 1998
|g 81(2009), 4 vom: 15. Apr., Seite 401-6
|w (DE-627)NLM098214292
|x 1061-4303
|7 nnns
|
773 |
1 |
8 |
|g volume:81
|g year:2009
|g number:4
|g day:15
|g month:04
|g pages:401-6
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 81
|j 2009
|e 4
|b 15
|c 04
|h 401-6
|