3D shape recovery of smooth surfaces : dropping the fixed-viewpoint assumption

We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and u...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 7 vom: 14. Juli, Seite 1310-24
1. Verfasser: Moses, Yael (VerfasserIn)
Weitere Verfasser: Shimshoni, Ilan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM188542337
003 DE-627
005 20231223182114.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.147  |2 doi 
028 5 2 |a pubmed24n0629.xml 
035 |a (DE-627)NLM188542337 
035 |a (NLM)19443927 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moses, Yael  |e verfasserin  |4 aut 
245 1 0 |a 3D shape recovery of smooth surfaces  |b dropping the fixed-viewpoint assumption 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2009 
500 |a Date Revised 15.05.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shimshoni, Ilan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 7 vom: 14. Juli, Seite 1310-24  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:7  |g day:14  |g month:07  |g pages:1310-24 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.147  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 7  |b 14  |c 07  |h 1310-24