Minimum distance between pattern transformation manifolds : algorithm and applications

Transformation invariance is an important property in pattern recognition, where different observations of the same object typically receive the same label. This paper focuses on a transformation-invariant distance measure that represents the minimum distance between the transformation manifolds spa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 7 vom: 14. Juli, Seite 1225-38
1. Verfasser: Kokiopoulou, Effrosyni (VerfasserIn)
Weitere Verfasser: Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM188542272
003 DE-627
005 20250210102041.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.156  |2 doi 
028 5 2 |a pubmed25n0629.xml 
035 |a (DE-627)NLM188542272 
035 |a (NLM)19443921 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kokiopoulou, Effrosyni  |e verfasserin  |4 aut 
245 1 0 |a Minimum distance between pattern transformation manifolds  |b algorithm and applications 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2009 
500 |a Date Revised 15.05.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Transformation invariance is an important property in pattern recognition, where different observations of the same object typically receive the same label. This paper focuses on a transformation-invariant distance measure that represents the minimum distance between the transformation manifolds spanned by patterns of interest. Since these manifolds are typically nonlinear, the computation of the manifold distance (MD) becomes a nonconvex optimization problem. We propose representing a pattern of interest as a linear combination of a few geometric functions extracted from a structured and redundant basis. Transforming the pattern results in the transformation of its constituent parts. We show that, when the transformation is restricted to a synthesis of translations, rotations, and isotropic scalings, such a pattern representation results in a closed-form expression of the manifold equation with respect to the transformation parameters. The MD computation can then be formulated as a minimization problem whose objective function is expressed as the difference of convex functions (DC). This interesting property permits optimally solving the optimization problem with DC programming solvers that are globally convergent. We present experimental evidence which shows that our method is able to find the globally optimal solution, outperforming existing methods that yield suboptimal solutions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 31(2009), 7 vom: 14. Juli, Seite 1225-38  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:7  |g day:14  |g month:07  |g pages:1225-38 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.156  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 7  |b 14  |c 07  |h 1225-38