A fast 2D shape recovery approach by fusing features and appearance

In this paper, we present a fusion approach to solve the nonrigid shape recovery problem, which takes advantage of both the appearance information and the local features. We have two major contributions. First, we propose a novel progressive finite Newton optimization scheme for the feature-based no...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 7 vom: 14. Juli, Seite 1210-24
1. Verfasser: Zhu, Jianke (VerfasserIn)
Weitere Verfasser: Lyu, Michael R, Huang, Thomas S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM188542264
003 DE-627
005 20231223182114.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.151  |2 doi 
028 5 2 |a pubmed24n0629.xml 
035 |a (DE-627)NLM188542264 
035 |a (NLM)19443920 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Jianke  |e verfasserin  |4 aut 
245 1 2 |a A fast 2D shape recovery approach by fusing features and appearance 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2009 
500 |a Date Revised 15.05.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we present a fusion approach to solve the nonrigid shape recovery problem, which takes advantage of both the appearance information and the local features. We have two major contributions. First, we propose a novel progressive finite Newton optimization scheme for the feature-based nonrigid surface detection problem, which is reduced to only solving a set of linear equations. The key is to formulate the nonrigid surface detection as an unconstrained quadratic optimization problem that has a closed-form solution for a given set of observations. Second, we propose a deformable Lucas-Kanade algorithm that triangulates the template image into small patches and constrains the deformation through the second-order derivatives of the mesh vertices. We formulate it into a sparse regularized least squares problem, which is able to reduce the computational cost and the memory requirement. The inverse compositional algorithm is applied to efficiently solve the optimization problem. We have conducted extensive experiments for performance evaluation on various environments, whose promising results show that the proposed algorithm is both efficient and effective 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lyu, Michael R  |e verfasserin  |4 aut 
700 1 |a Huang, Thomas S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 7 vom: 14. Juli, Seite 1210-24  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:7  |g day:14  |g month:07  |g pages:1210-24 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.151  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 7  |b 14  |c 07  |h 1210-24