Combining slanted-frame classifiers for improved HMM-based Arabic handwriting recognition

The problem addressed in this study is the offline recognition of handwritten Arabic city names. The names are assumed to belong to a fixed lexicon of about 1,000 entries. A state-of-the-art classical right-left hidden Markov model (HMM)-based recognizer (reference system) using the sliding window a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 7 vom: 14. Juli, Seite 1165-77
1. Verfasser: Al-Hajj Mohamad, Ramy (VerfasserIn)
Weitere Verfasser: Likforman-Sulem, Laurence, Mokbel, Chafic
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM188542213
003 DE-627
005 20231223182114.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.136  |2 doi 
028 5 2 |a pubmed24n0629.xml 
035 |a (DE-627)NLM188542213 
035 |a (NLM)19443916 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Al-Hajj Mohamad, Ramy  |e verfasserin  |4 aut 
245 1 0 |a Combining slanted-frame classifiers for improved HMM-based Arabic handwriting recognition 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.07.2009 
500 |a Date Revised 01.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The problem addressed in this study is the offline recognition of handwritten Arabic city names. The names are assumed to belong to a fixed lexicon of about 1,000 entries. A state-of-the-art classical right-left hidden Markov model (HMM)-based recognizer (reference system) using the sliding window approach is developed. The feature set includes both baseline-independent and baseline-dependent features. The analysis of the errors made by the recognizer shows that the inclination, overlap, and shifted positions of diacritical marks are major sources of errors. In this paper, we propose coping with these problems. Our approach relies on the combination of three homogeneous HMM-based classifiers. All classifiers have the same topology as the reference system and differ only in the orientation of the sliding window. We compare three combination schemes of these classifiers at the decision level. Our reported results on the benchmark IFN/ENIT database of Arabic Tunisian city names give a recognition rate higher than 90 percent accuracy and demonstrate the superiority of the neural network-based combination. Our results also show that the combination of classifiers performs better than a single classifier dealing with slant-corrected images and that the approach is robust for a wide range of orientation angles 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Likforman-Sulem, Laurence  |e verfasserin  |4 aut 
700 1 |a Mokbel, Chafic  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 7 vom: 14. Juli, Seite 1165-77  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:7  |g day:14  |g month:07  |g pages:1165-77 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.136  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 7  |b 14  |c 07  |h 1165-77