Asymmetric principal component and discriminant analyses for pattern classification
This paper studies the roles of the principal component and discriminant analyses in the pattern classification and explores their problems with the asymmetric classes and/or the unbalanced training data. An asymmetric principal component analysis (APCA) is proposed to remove the unreliable dimensio...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 5 vom: 30. Mai, Seite 931-7 |
---|---|
1. Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | This paper studies the roles of the principal component and discriminant analyses in the pattern classification and explores their problems with the asymmetric classes and/or the unbalanced training data. An asymmetric principal component analysis (APCA) is proposed to remove the unreliable dimensions more effectively than the conventional PCA. Targeted at the two-class problem, an asymmetric discriminant analysis in the APCA subspace is proposed to regularize the eigenvalue that is, in general, a biased estimate of the variance in the corresponding dimension. These efforts facilitate a reliable and discriminative feature extraction for the asymmetric classes and/or the unbalanced training data. The proposed approach is validated in the experiments by comparing it with the related methods. It consistently achieves the highest classification accuracy among all tested methods in the experiments |
---|---|
Beschreibung: | Date Completed 10.06.2009 Date Revised 11.11.2019 published: Print Citation Status MEDLINE |
ISSN: | 1939-3539 |