Electric-field-induced interfacial instabilities and morphologies of thin viscous and elastic bilayers

Electric-field-induced instabilities in thin bilayers composed of either purely viscous or purely elastic films resting on a solid substrate are studied. In contrast to the electric-field-induced instability in a single elastic film, the length scale of the instability for elastic bilayers can be tu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 16 vom: 18. Aug., Seite 9108-18
1. Verfasser: Bandyopadhyay, Dipankar (VerfasserIn)
Weitere Verfasser: Sharma, Ashutosh, Thiele, Uwe, Reddy, P Dinesh Sankar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Electric-field-induced instabilities in thin bilayers composed of either purely viscous or purely elastic films resting on a solid substrate are studied. In contrast to the electric-field-induced instability in a single elastic film, the length scale of the instability for elastic bilayers can be tuned by changing the ratios of the shear moduli, thicknesses, and dielectric permittivities of the films. Linear stability analysis is employed to uncover the variations in the wavelength. The instabilities of the viscous bilayers follow different modes of interfacial evolution: either in-phase bending or antiphase squeezing. Linear and nonlinear analyses show that the mode type can be switched by changing the dielectric permittivities of the films. Nonlinear simulations find a number of intriguing interfacial morphologies: (a) an embedded upper layer in an array of lower layer columns, (b) upper layer columns encapsulated by lower layer beakers, (c) lower layer columns covered by the upper layer liquid resulting in concentric core-shell columns, (d) droplets of upper liquid on a largely undisturbed lower layer, and (f) evolution of two different wavelengths at the two interfaces of the bilayer. The simulated morphology types (a), (b) and (d) have been seen previously in experiments. The effect of the film viscosities on the evolution of the instability and final morphologies is also discussed
Beschreibung:Date Completed 13.10.2009
Date Revised 01.09.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la900635f