First-principle calculations on CO oxidation catalyzed by a gold nanoparticle

Copyright 2009 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 31(2010), 2 vom: 30. Jan., Seite 258-65
1. Verfasser: Chen, Hsin-Tsung (VerfasserIn)
Weitere Verfasser: Chang, Jee-Gong, Ju, Shin-Pon, Chen, Hui-Lung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM188455566
003 DE-627
005 20231223181941.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21314  |2 doi 
028 5 2 |a pubmed24n0628.xml 
035 |a (DE-627)NLM188455566 
035 |a (NLM)19434739 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hsin-Tsung  |e verfasserin  |4 aut 
245 1 0 |a First-principle calculations on CO oxidation catalyzed by a gold nanoparticle 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2010 
500 |a Date Revised 16.12.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright 2009 Wiley Periodicals, Inc. 
520 |a We have elucidated the mechanism of CO oxidation catalyzed by gold nanoparticles through first-principle density-functional theory (DFT) calculations. Calculations on selected model show that the low-coordinated Au atoms of the Au(29) nanoparticle carry slightly negative charges, which enhance the O(2) binding energy compared with the corresponding bulk surfaces. Two reaction pathways of the CO oxidation were considered: the Eley-Rideal (ER) and Langmuir-Hinshelwood (LH). The overall LH reaction O(2(ads)) + CO((gas)) --> O(2(ads)) + CO((ads)) --> OOCO((ads)) --> O((ads)) + CO(2(gas)) is calculated to be exothermic by 3.72 eV; the potential energies of the two transition states (TS(LH1) and TS(LH2)) are smaller than the reactants, indicating that no net activation energy is required for this process. The CO oxidation via ER reaction Au(29) + O(2(gas)) + CO((gas)) --> Au(29)-O(2(ads)) + CO((gas)) --> Au(29)-CO(3(ads)) --> Au(29)-O((ads)) + CO(2(gas)) requires an overall activation barrier of 0.19 eV, and the formation of Au(29)-CO(3(ads)) intermediate possesses high exothermicity of 4.33 eV, indicating that this process may compete with the LH mechanism. Thereafter, a second CO molecule can react with the remaining O atom via the ER mechanism with a very small barrier (0.03 eV). Our calculations suggest that the CO oxidation catalyzed by the Au(29) nanoparticle is likely to occur at or even below room temperature. To gain insights into high-catalytic activity of the gold nanoparticles, the interaction nature between adsorbate and substrate is also analyzed by the detailed electronic analysis 
650 4 |a Journal Article 
700 1 |a Chang, Jee-Gong  |e verfasserin  |4 aut 
700 1 |a Ju, Shin-Pon  |e verfasserin  |4 aut 
700 1 |a Chen, Hui-Lung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 31(2010), 2 vom: 30. Jan., Seite 258-65  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:31  |g year:2010  |g number:2  |g day:30  |g month:01  |g pages:258-65 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21314  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2010  |e 2  |b 30  |c 01  |h 258-65