Environmental assessment of Ammässuo Landfill (Finland) by means of LCA-modelling (EASEWASTE)

The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the O...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 27(2009), 5 vom: 01. Aug., Seite 542-50
1. Verfasser: Niskanen, Antti (VerfasserIn)
Weitere Verfasser: Manfredi, Simone, Christensen, Thomas H, Anderson, Reetta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Environmental Pollutants
Beschreibung
Zusammenfassung:The Old Ammässuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management of the Old Ammässuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity-related impact categories and an impact categorized as spoiled groundwater resources (SGR). With respect to standard and toxicity-related impact categories, the LCA results show that substantial impact potentials are estimated for global warming (GW), ozone depletion (OD), human toxicity via soil (HTs) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall, the results demonstrate that gas management has great importance to the environmental performance of the Old Ammässuo Landfill. However, several chemicals related to gas composition (especially trace compounds) and specific emissions from on-site operations were not available or were not measured and were therefore taken from the literature. Measurement campaigns and field investigations should be undertaken in order to obtain a more robust and comprehensive dataset that can be used in the LCA-modelling, before major improvements regarding landfill management are finalized
Beschreibung:Date Completed 23.09.2009
Date Revised 29.07.2009
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X08096976