Three-dimensional reconstruction of the "bright ring" echogenicity from porcine blood upstream in a stenosed tube

To investigate the echogenicity variation due to blood flow disturbance near a stenosis under pulsatile flow, a series of in vitro experiments were performed in a rigid tube with an eccentric stenosis of 70% area reduction in a mock flow loop. An ultrasonic B-mode with a Doppler spectrogram was used...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 56(2009), 4 vom: 05. Apr., Seite 880-5
1. Verfasser: Paeng, Dong-Guk (VerfasserIn)
Weitere Verfasser: Nam, Kweon-Ho, Choi, Min Joo, Shung, K Kirk
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Letter
Beschreibung
Zusammenfassung:To investigate the echogenicity variation due to blood flow disturbance near a stenosis under pulsatile flow, a series of in vitro experiments were performed in a rigid tube with an eccentric stenosis of 70% area reduction in a mock flow loop. An ultrasonic B-mode with a Doppler spectrogram was used to correlate echogenicity with flow speed and stroke rate. This paper reports echogenicity variation upstream of a stenosis under pulsatile flow. The experimental results showed that blood flow disturbed by the stenosis affects echogenicity and red blood cell rouleaux upstream. A hypoechoic "black hole" was shown at the center of the stream at systole. During diastole, the "bright ring" in cross-sectional images was observed as eddy-like or parabolic profiles in longitudinal images. These images could be reconstructed into a 3-dimensional animation, providing a better understanding of dynamic changes of the rouleaux distribution upstream of a stenosis under pulsatile flow
Beschreibung:Date Completed 06.10.2009
Date Revised 25.11.2016
published: Print
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2009.1113