|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM188168958 |
003 |
DE-627 |
005 |
20231223181438.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2009.161
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0627.xml
|
035 |
|
|
|a (DE-627)NLM188168958
|
035 |
|
|
|a (NLM)19403981
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a MacAdam, Jitka
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An investigation into advanced oxidation of three chlorophenoxy pesticides in surface water
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.07.2009
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The performance of Fenton's reagent in removing 2,4-D, MCPA and mecoprop from surface water has been evaluated here. Initial trials were undertaken at a pesticide concentration of 4.5 x 10(-5) mol l(-1) in deionised water at pH 3 and two different stoichiometric ratios of pesticide: Fe(II): H(2)O(2) (1:1:10, 1:10:10) were evaluated. At the 1:1:10 ratio, approximately 10 minutes were required to achieve a 50% removal of the pesticide. At the higher ratio the removal achieved after 1 minute, was >90%. Subsequent experiments studied the performance of Fenton (4.5 x 10(-4) mol l(-1) Fe(II): 4.5 x 10(-4) mol l(-1) H(2)O(2)) in surface water spiked with pesticides and the impact of pH on the rate and degree of pesticide degradation was investigated. The removal was significantly improved at pH 3 in comparison to pH 6.5. The effect of Fenton on DOC removal from surface water was followed. Experiments investigated the performance of Fenton at pesticide concentrations of 7.5 x 10(-9) mol l(-1) in surface water. Fenton was shown to be an effective treatment for removing low levels of pesticides from surface waters at pH 3 & 4
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Chlorophenols
|2 NLM
|
650 |
|
7 |
|a Fenton's reagent
|2 NLM
|
650 |
|
7 |
|a Pesticides
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Hydrogen Peroxide
|2 NLM
|
650 |
|
7 |
|a BBX060AN9V
|2 NLM
|
650 |
|
7 |
|a Iron
|2 NLM
|
650 |
|
7 |
|a E1UOL152H7
|2 NLM
|
700 |
1 |
|
|a Parsons, Simon A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 59(2009), 8 vom: 26., Seite 1665-71
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:59
|g year:2009
|g number:8
|g day:26
|g pages:1665-71
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2009.161
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2009
|e 8
|b 26
|h 1665-71
|