Electronic noise modeling in statistical iterative reconstruction

We consider electronic noise modeling in tomographic image reconstruction when the measured signal is the sum of a Gaussian distributed electronic noise component and another random variable whose log-likelihood function satisfies a certain linearity condition. Examples of such likelihood functions...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 18(2009), 6 vom: 08. Juni, Seite 1228-38
1. Verfasser: Xu, Jingyan (VerfasserIn)
Weitere Verfasser: Tsui, Benjamin M W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM188116753
003 DE-627
005 20250210090943.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2017139  |2 doi 
028 5 2 |a pubmed25n0627.xml 
035 |a (DE-627)NLM188116753 
035 |a (NLM)19398410 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Jingyan  |e verfasserin  |4 aut 
245 1 0 |a Electronic noise modeling in statistical iterative reconstruction 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.08.2009 
500 |a Date Revised 20.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We consider electronic noise modeling in tomographic image reconstruction when the measured signal is the sum of a Gaussian distributed electronic noise component and another random variable whose log-likelihood function satisfies a certain linearity condition. Examples of such likelihood functions include the Poisson distribution and an exponential dispersion (ED) model that can approximate the signal statistics in integration mode X-ray detectors. We formulate the image reconstruction problem as a maximum-likelihood estimation problem. Using an expectation-maximization approach, we demonstrate that a reconstruction algorithm can be obtained following a simple substitution rule from the one previously derived without electronic noise considerations. To illustrate the applicability of the substitution rule, we present examples of a fully iterative reconstruction algorithm and a sinogram smoothing algorithm both in transmission CT reconstruction when the measured signal contains additive electronic noise. Our simulation studies show the potential usefulness of accurate electronic noise modeling in low-dose CT applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tsui, Benjamin M W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 18(2009), 6 vom: 08. Juni, Seite 1228-38  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:18  |g year:2009  |g number:6  |g day:08  |g month:06  |g pages:1228-38 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2017139  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2009  |e 6  |b 08  |c 06  |h 1228-38