Rate-invariant recognition of humans and their activities

Pattern recognition in video is a challenging task because of the multitude of spatio-temporal variations that occur in different videos capturing the exact same event. While traditional pattern-theoretic approaches account for the spatial changes that occur due to lighting and pose, very little has...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 18(2009), 6 vom: 08. Juni, Seite 1326-39
1. Verfasser: Veeraraghavan, Ashok (VerfasserIn)
Weitere Verfasser: Srivastava, Anuj, Roy-Chowdhury, Amit K, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM188116745
003 DE-627
005 20231223181342.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2017143  |2 doi 
028 5 2 |a pubmed24n0627.xml 
035 |a (DE-627)NLM188116745 
035 |a (NLM)19398409 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Veeraraghavan, Ashok  |e verfasserin  |4 aut 
245 1 0 |a Rate-invariant recognition of humans and their activities 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.08.2009 
500 |a Date Revised 18.05.2009 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Pattern recognition in video is a challenging task because of the multitude of spatio-temporal variations that occur in different videos capturing the exact same event. While traditional pattern-theoretic approaches account for the spatial changes that occur due to lighting and pose, very little has been done to address the effect of temporal rate changes in the executions of an event. In this paper, we provide a systematic model-based approach to learn the nature of such temporal variations (time warps) while simultaneously allowing for the spatial variations in the descriptors. We illustrate our approach for the problem of action recognition and provide experimental justification for the importance of accounting for rate variations in action recognition. The model is composed of a nominal activity trajectory and a function space capturing the probability distribution of activity-specific time warping transformations. We use the square-root parameterization of time warps to derive geodesics, distance measures, and probability distributions on the space of time warping functions. We then design a Bayesian algorithm which treats the execution rate function as a nuisance variable and integrates it out using Monte Carlo sampling, to generate estimates of class posteriors. This approach allows us to learn the space of time warps for each activity while simultaneously capturing other intra- and interclass variations. Next, we discuss a special case of this approach which assumes a uniform distribution on the space of time warping functions and show how computationally efficient inference algorithms may be derived for this special case. We discuss the relative advantages and disadvantages of both approaches and show their efficacy using experiments on gait-based person identification and activity recognition 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Srivastava, Anuj  |e verfasserin  |4 aut 
700 1 |a Roy-Chowdhury, Amit K  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 18(2009), 6 vom: 08. Juni, Seite 1326-39  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:18  |g year:2009  |g number:6  |g day:08  |g month:06  |g pages:1326-39 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2017143  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2009  |e 6  |b 08  |c 06  |h 1326-39