Consistent depth maps recovery from a video sequence

This paper presents a novel method for recovering consistent depth maps from a video sequence. We propose a bundle optimization framework to address the major difficulties in stereo reconstruction, such as dealing with image noise, occlusions, and outliers. Different from the typical multi-view ster...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 6 vom: 12. Juni, Seite 974-88
1. Verfasser: Zhang, Guofeng (VerfasserIn)
Weitere Verfasser: Jia, Jiaya, Wong, Tien-Tsin, Bao, Hujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM187873747
003 DE-627
005 20231223180917.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.52  |2 doi 
028 5 2 |a pubmed24n0626.xml 
035 |a (DE-627)NLM187873747 
035 |a (NLM)19372604 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Guofeng  |e verfasserin  |4 aut 
245 1 0 |a Consistent depth maps recovery from a video sequence 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.07.2009 
500 |a Date Revised 17.04.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a novel method for recovering consistent depth maps from a video sequence. We propose a bundle optimization framework to address the major difficulties in stereo reconstruction, such as dealing with image noise, occlusions, and outliers. Different from the typical multi-view stereo methods, our approach not only imposes the photo-consistency constraint, but also explicitly associates the geometric coherence with multiple frames in a statistical way. It thus can naturally maintain the temporal coherence of the recovered dense depth maps without over-smoothing. To make the inference tractable, we introduce an iterative optimization scheme by first initializing the disparity maps using a segmentation prior and then refining the disparities by means of bundle optimization. Instead of defining the visibility parameters, our method implicitly models the reconstruction noise as well as the probabilistic visibility. After bundle optimization, we introduce an efficient space-time fusion algorithm to further reduce the reconstruction noise. Our automatic depth recovery is evaluated using a variety of challenging video examples 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
700 1 |a Wong, Tien-Tsin  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 6 vom: 12. Juni, Seite 974-88  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:6  |g day:12  |g month:06  |g pages:974-88 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.52  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 6  |b 12  |c 06  |h 974-88