Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn

Expression of selected genes in needles of Norway spruce (Picea abies [L.] Karst) was investigated by following their transcription levels during late autumn. Transcription was assessed in mature needles which likely serve as sensor of environmental cues that enable trees in the temperate and boreal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 47(2009), 8 vom: 15. Aug., Seite 681-9
1. Verfasser: Asante, Daniel K A (VerfasserIn)
Weitere Verfasser: Yakovlev, Igor A, Fossdal, Carl Gunnar, Timmerhaus, Gerrit, Partanen, Jouni, Johnsen, Oystein
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Expression of selected genes in needles of Norway spruce (Picea abies [L.] Karst) was investigated by following their transcription levels during late autumn. Transcription was assessed in mature needles which likely serve as sensor of environmental cues that enable trees in the temperate and boreal regions to change between stages of growth, frost tolerance and bud dormancy. Samples were collected from grafts kept under outdoor conditions and after bud burst forcing in greenhouse at 20 degrees C (12 h darkness) for one week. Transcription was assayed with real-time RT-PCR. During the sampling period, chilling requirement was partially fulfilled, and time to bud burst after forcing was decreased. Of the 27 transcripts studied, expression of 16 was significantly affected either by forcing, sampling time, or interaction between them. PaSAP, PaACP, PaSGS3, PaWRKY, PaDIR9, PaCCCH and dehydrin genes responded drastically to forcing temperatures at all sampling points, showing no correlation with readiness for bud burst. Expression patterns of some vernalization pathway gene homologs PaVIN3, and also of PaMDC, PaLOV1 and PaDAL3 had a clear opposite trends between forcing and outdoor conditions, which could imply their role in chilling accumulation and bud burst regulation/cold acclimation. These genes could constitute putative candidates for further detailed study, whose regulation in needles may be involved in preparation towards bud burst and chilling accumulation sensing
Beschreibung:Date Completed 13.11.2009
Date Revised 16.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2009.03.004