Efficient surface reconstruction from noisy data using regularized membrane potentials

A physically motivated method for surface reconstruction is proposed that can recover smooth surfaces from noisy and sparse data sets. No orientation information is required. By a new technique based on regularized-membrane potentials the input sample points are aggregated, leading to improved noise...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 18(2009), 5 vom: 15. Mai, Seite 1119-34
1. Verfasser: Jalba, Andrei C (VerfasserIn)
Weitere Verfasser: Roerdink, Jos B T M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM187607869
003 DE-627
005 20231223180348.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2016141  |2 doi 
028 5 2 |a pubmed24n0625.xml 
035 |a (DE-627)NLM187607869 
035 |a (NLM)19342343 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jalba, Andrei C  |e verfasserin  |4 aut 
245 1 0 |a Efficient surface reconstruction from noisy data using regularized membrane potentials 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.06.2009 
500 |a Date Revised 03.04.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A physically motivated method for surface reconstruction is proposed that can recover smooth surfaces from noisy and sparse data sets. No orientation information is required. By a new technique based on regularized-membrane potentials the input sample points are aggregated, leading to improved noise tolerability and outlier removal, without sacrificing much with respect to detail (feature) recovery. After aggregating the sample points on a volumetric grid, a novel, iterative algorithm is used to classify grid points as exterior or interior to the surface. This algorithm relies on intrinsic properties of the smooth scalar field on the grid which emerges after the aggregation step. Second, a mesh-smoothing paradigm based on a mass-spring system is introduced. By enhancing this system with a bending-energy minimizing term we ensure that the final triangulated surface is smoother than piecewise linear. In terms of speed and flexibility, the method compares favorably with respect to previous approaches. Most parts of the method are implemented on modern graphics processing units (GPUs). Results in a wide variety of settings are presented, ranging from surface reconstruction on noise-free point clouds to grayscale image segmentation 
650 4 |a Journal Article 
700 1 |a Roerdink, Jos B T M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 18(2009), 5 vom: 15. Mai, Seite 1119-34  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:18  |g year:2009  |g number:5  |g day:15  |g month:05  |g pages:1119-34 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2016141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2009  |e 5  |b 15  |c 05  |h 1119-34