Online sequential fuzzy extreme learning machine for function approximation and classification problems

In this correspondence, an online sequential fuzzy extreme learning machine (OS-Fuzzy-ELM) has been developed for function approximation and classification problems. The equivalence of a Takagi-Sugeno-Kang (TSK) fuzzy inference system (FIS) to a generalized single hidden-layer feedforward network is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 39(2009), 4 vom: 31. Aug., Seite 1067-72
1. Verfasser: Rong, Hai-Jun (VerfasserIn)
Weitere Verfasser: Huang, Guang-Bin, Sundararajan, N, Saratchandran, P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this correspondence, an online sequential fuzzy extreme learning machine (OS-Fuzzy-ELM) has been developed for function approximation and classification problems. The equivalence of a Takagi-Sugeno-Kang (TSK) fuzzy inference system (FIS) to a generalized single hidden-layer feedforward network is shown first, which is then used to develop the OS-Fuzzy-ELM algorithm. This results in a FIS that can handle any bounded nonconstant piecewise continuous membership function. Furthermore, the learning in OS-Fuzzy-ELM can be done with the input data coming in a one-by-one mode or a chunk-by-chunk (a block of data) mode with fixed or varying chunk size. In OS-Fuzzy-ELM, all the antecedent parameters of membership functions are randomly assigned first, and then, the corresponding consequent parameters are determined analytically. Performance comparisons of OS-Fuzzy-ELM with other existing algorithms are presented using real-world benchmark problems in the areas of nonlinear system identification, regression, and classification. The results show that the proposed OS-Fuzzy-ELM produces similar or better accuracies with at least an order-of-magnitude reduction in the training time
Beschreibung:Date Completed 09.09.2009
Date Revised 28.05.2009
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0492
DOI:10.1109/TSMCB.2008.2010506